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Abstract 

Based on the current fiber optic technology, a new computational model, called a linear array with a reconfigurable pipelined 

bus system (LARPBS), is proposed in this paper. A parallel quicksort algorithm is implemented on the model, and its time 
complexity is analyzed. For a set of N numbers, the quicksort algorithm reported in this paper runs in O(log, N) average time 
on a linear array with a reconfigurable pipelined bus system of size N. If the number of processors available is reduced to P, 

where P < N, the algorithm runs in O((N/ P) log, N) average time and is still scalable. Besides proposing a new algorithm 
on the model, some basic data movement operations involved in the algorithm are discussed. We believe that these operations 
can be used to design other parallel algorithms on the same model. Future research in this area is also identified in this paper. 
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In a multiprocessor system, processors can be con- 

nected via an interconnection network such as hyper- 

cube and mesh [ 121. One drawback of these networks 

is that they provide limited connectivity between pro- 

cessors and their communication diameter (the max- 

imum distance between processors) is proportional 

to the size of the system [10,23]. Hence, increasing 

the size of these networks does not result in a fur- 

ther decrease in the time complexities of most parallel 

algorithms running on them. The time complexities 

are lower bounded by the communication diameter of 

these networks. One way to overcome this problem 

is to use electronic buses for communication since 
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they provide direct communication between any two 

processors in the system [ 131. 

Processor arrays with buses have become the focus 

of much interest due to recent advances in VLSI and 

fiber optic technology. Arrays with a global bus [4], 

arrays with multiple buses [13], and arrays with re- 

configurable buses [ 18,19,22] have been proposed for 

efficient computations. In an array with reconfigurable 

buses, messages can be transmitted concurrently when 

the bus is partitioned into many segments, and the di- 

ameter problem in a point-to-point network disappears 

when all segments are reconfigured as a single global 

bus. Many different models have been proposed and 

many efficient algorithms have been implemented on 

such models. However, when there is a large amount 

of message transfer between different sections of the 

network, the bus segments themselves become a po- 

tential bottleneck. 

Fiber optic communications offer a combination 

of high bandwidth and low error probability. Several 

researchers have proposed using optical interconnec- 

tions to connect processors in a parallel computer 

system [2,7,16,17]. Among them, the distributed- 

memory SIMD (single instruction multiple data) com- 

puter with pipelined optical buses has received a lot of 

attention [9,14,17,20,30-321 due to its simplicity and 

low cost. In such a system, messages can be transmit- 

ted concurrently on a pipelined optical bus without 

partitioning the bus into several segments while the 

time delay between the furthest processors is only the 

end-to-end propagation delay of light over a waveg- 

uided bus. This design integrates the advantages of 

both optical transmission and electronic computation. 

Several parallel algorithms such as the Hough trans- 

form [20], singular value decomposition [24], order 

statistics [21], sorting [8], and some numerical al- 

gorithms [l l] have been proposed for arrays with 

a pipelined bus system. The preliminary work indi- 

cates that arrays with pipelined buses are very efficient 

for parallel computation due to the high bandwidth 

within a pipelined bus system. All the previous works 

are based on fixed configuration. However, different 

algorithms require different communication patterns. 

Some algorithms may even need different communica- 

tion patterns during different phases of the same com- 

putation. Hence, introducing array reconfiguration can 

improve the efficiency of many algorithms. In this pa- 

per, we propose a new computational model termed 

linear arrays with a reconfigurable pipelined bus sys- 

tem (LARPBS) based on ideas of pipelined optical 

bus systems and processor array reconfiguration [25]. 

In such a model, messages can be transmitted concur- 

rently on a bus in a pipelined fashion and a pipelined 

bus can be reconfigured dynamically under program 

control to suit communication needs. In order for a 

parallel algorithm to be efficient, times for both local 

operations and communication have to be small. In the 

LARPBS model, the communication time is the num- 

ber of bus cycles used in an algorithm. An efficient 

sorting algorithm will be proposed for the LARPBS 

and its time complexity will be analyzed in this paper. 

It is shown that the time complexity of the algorithm 

compares favorably with those implemented on arrays 

with traditional reconfigurable electronic buses. 

2. The LARPBS model 

Before describing the LARPBS model, we first 

explain the communication mechanism of a pipelined 

bus system based on fiber optic technology. A 

pipelined optical bus system uses optical waveg- 

uides instead of electrical buses to transfer messages 

among electronic processors. The advantages of using 

waveguides can be seen as follows, Besides the high 

propagation speed of light, there are two important 

properties of optical signal (pulse) transmission on 

an optical bus: unidirectional propagation and pre- 

dictable propagation delay per unit length. These two 

properties enable synchronized concurrent access of 

an optical bus in a pipelined fashion [9,17,30,31]. 

This, combined with the abilities of a bus structure 

to do efficient broadcasting or multicasting, makes 

the architecture suitable for many applications that 

involve intensive communication operations. 

Fig. 1 shows an SIMD linear array in which elec- 

tronic processors are connected with an optical bus. 

Each processor is connected to the bus with two di- 

rectional couplers, one for transmitting on the upper 

segment and the other for receiving from the lower 
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0 Processor 0 Directional Coupler 

Fig. 1. A linear optical bus system of n processors. 
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Reference Pulse Select Pulse Delay 

Fig. 2. An optical bus with delays added. 

segment of the bus [9,17,30,31]. The optical bus con- 

tains three identical waveguides, one for carrying mes- 

sages (the message waveguides) and the other two 

for carrying address information (the reference waveg- 

uide and the select waveguide), as shown in Fig. 2. 

For the purpose of simplicity, the message waveg- 

uide, which resembles the reference waveguide, has 

been omitted from the figure. Messages are organized 

as fixed-length message frames. Note that optical sig- 

nals propagate unidirectionally from left to right on 

the upper segment and from right to left on the lower 

segment. This bus system is also referred to as the 

folded-bus connection in [9]. 

Although the system uses a physical line intercon- 

nect, it can simulate many communication networks 

such as binary trees, rings, and shuffle-exchange net- 

works [9,17]. Thus, many complicated communica- 

tion patterns can be implemented on the optical bus 

system. In fact, active research is being done to em- 

ulate different network topologies on the optical bus 

system [26,33,35]. 

Let w be the pulse duration in seconds and Cb the 

velocity of light in these waveguides. Define a unit de- 

lay A to be the spatial length of a single optical pulse, 

i.e., A = w x cb. Initially, processors are connected 

to these three waveguides such that between any two 

given processors, the same length of fiber is used on all 

three waveguides. Hence, the propagation delays be- 

tween two processors are the same for all three waveg- 

uides. A bus cycle for an optical bus is defined as 

the end-to-end propagation delay on the bus; i.e., the 

time taken for an optical signal to propagate through 

the entire bus. If t is the time taken for a signal to 

traverse the optical distance between two consecutive 

processors on the bus, then the length of a bus cycle 

for the system of Fig. 1 is 2Nt. We then add one unit 

delay A, shown as a loop in Fig. 2, between any two 

processors on the receiving segments of the reference 

waveguides and of the message waveguides. Each loop 

is an extra segment of a fiber and the amount of delay 

added can be accurately chosen based on the length 

of the segment. As a result, the propagation delays on 

the receiving segments of the select waveguide and the 

reference waveguides are no longer the same. Finally, 

we add a conditional delay A between any two proces- 

sors i and i + 1, where 0 6 i 6 N - 2, on the transmit- 

ting segments of the select waveguides (Fig. 2). The 

switch between processor i and i + 1 is called S(i + 1) 

and is local to processor i + 1. Thus, every proces- 

sor has its own switch except processor 0. The condi- 

tional delays can be implemented using 2 x 2 optical 

switches such as the Ti : LiNbO3 switches used in an 

optical computer [3]. Each switch can be set by the lo- 

cal processor to two different states: straight or cross 

as shown in Fig. 3. When a switch is set to straight, it 

takes t time for an optical signal on the transmitting 

segments of the select waveguides to propagate from 

one processor to its nearest neighbor. When a switch 

is set to cross, a delay w is introduced and such prop- 

agation will take t + o time. Clearly, the maximum 

n (7 

--W---b _I-_ 

Fig. 3. Conditional delays implemented using 2 x 2 optical 

switches. 
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delay that the switches can introduce is the duration 

of N - 1 pulses. 

Messages transmitted by different processors may 

overlap with each other even if they propagate unidi- 

rectionally on the bus. We call these message over- 

lappings transmission conjlicts. Assume each message 

has b binary bits, each bit represented by an optical 

pulse, with the existence of a pulse for 1 and the ab- 

sence for 0. To ensure that there are no transmission 

conflicts, the following condition has to be satisfied: 

r > bw, 

where t is the time taken for a signal to traverse the 

optical distance between two consecutive processors 

on the bus, and w is the pulse duration. Obviously, 

when b is large, t has to be large too. This in turn 

means a longer bus cycle. Note that the above condi- 

tion ensures that each message can fit into a pipeline 

cycle such that in a bus cycle, up to N messages can 

be transmitted by processors simultaneously without 

collisions on the bus. In a parallel array, messages 

normally have very short length; i.e., b is very small. 

Thus, in the following discussion, we assume that the 

above condition is always satisfied and that no trans- 

mission conflicts are possible as long as all proces- 

sors are synchronized at the beginning of each bus 

cycle. 

Now let us describe the LARPBS model. In the 

LARPBS, we insert an optical switch on each sec- 

tion of the transmitting bus and receiving bus. Thus, 

each processor has six more Iocal switches besides its 

switch for conditional delay; three on its three receiv- 

ing segments and three on its three transmitting seg- 

ments. The switches on the receiving and transmitting 

segments between processors i and i + 1 are called 

RSR(i) and RST(i), respectively, and are local to pro- 

cessor i as shown in Fig. 4. Here, RSR(i), 0 < i < N, 

are 2 x 1 optical switches, and RST(i), O<i < N, 

are 1 x 2 optical switches. In the following discussion, 

these switches will be called reconfigurable switches 

due to their function. When all switches are set to 

straight, the bus system operates as a regular pipelined 

bus system. When RSR(i) and RST(i) are set to cross, 

the whole bus system is split into two separate sys- 

tems, one consisting of processors 0, 1, . . ., and i and 

Fig. 4. The LARPBS model of size 6 with two subarrays. 

the other consisting of i + 1, i + 2,. . ., N - 1. Be- 

cause of the total delay for a signal passing the trans- 

mitting segment, the optical fiber between RST(i) and 

RSR(i), and the receiving segment is made to be equal 

to t, the array with processors O-i can operate as a 

regular linear array with a pipelined bus system; so 

does the array with processors i + 1 to N - 1. Fig. 4 

shows the LARPBS model with six processors. The ar- 

ray is split into two subarrays with the first one having 

four processors and the second one having two pro- 

cessors. In the figure, only one waveguide is shown. 

Also, conditional switches are omitted in the figure to 

avoid confusion. 

Several time-division switching methods can be ap- 

plied to route messages in an optical bus system. In the 

first approach, each processor is assigned a fixed time 

slot and transmits or receives a message during that 

particular time slot. A sequence of time slots formed 

on the transmitting segment of a bus is rearranged via 

a time-slot interchanger [34], and then forwarded to 

the receiving segment. Each time slot of the output 

sequence contains a message destined to the proces- 

sor corresponding to that slot. In the second approach, 

each processor is assigned a fixed transmitting time 

slot. An SIMD environment is assumed in this case. 

Hence, each processor knows which processor is send- 

ing a message to it and knows the time slot that con- 

tains the message [9,17]. The last approach is to use 

a coincident pulse technique [6,8,31]. Using this ap- 

proach, the relative time delay of a select pulse and 

a reference pulse is determined so that they will co- 

incide, thus producing a double-height pulse, only at 

receiver i . By properly adjusting the detecting thresh- 

old of the detector at processor i, this double-height 

pulse can be detected, thereby addressing i. 
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In this paper, the same approach to the coincident 

pulse technique is used to route messages or to broad- 

cast messages on the bus. The switches on the send- 

ing segments are used to conditionally delay the select 

pulses and can be closed or opened by the local pro- 

cessors (see Fig. 2). Now let us discuss in detail how 

to send a message from a source processor to a des- 

tination processor on an SIMD array using the coin- 

cidence pulse technique. First, set all switches on the 

transmitting segments to straight so that no delay is 

introduced in the switches on the transmitting seg- 

ments of the select waveguides. A source processor 

sends a reference pulse at time rrer (the beginning of 

a bus cycle) on the reference waveguide and a select 

pulse at time t,,t on the select waveguide. The source 

processor also sends a message frame, on the message 

waveguide, which propagates synchronously with the 

reference pulse. Whenever a processor detects a co- 

incidence of a reference pulse and a select pulse, it 

reads the message frame. In other words, in order for 

processor i to send a message to processor j, we need 

to have the two pulses coincide at processor j. This 

happens if and only if 

&,I = t,,f + (N - j - lb, 

where 0 6 i, j < N. Fig. 5 shows an address frame 

relative to a reference pulse for addressing processor 

j. Here, the select pulse is delayed for a time of (N - 

j - 1)o relative to the reference pulse. Hence, the two 

pulses meet at processor j after the reference pulse 

goes through N - j - 1 delays. 

In conclusion, for a given reference pulse transmit- 

ted at time tref, the presence of a select pulse at time 

Time * 
N-l N-j- 1 1 0 

Sel 

Ref 

Fig. 5. Address frames. 

tref + (N - j - 1)~ will address processor j while 

the absence of a select pulse at that time will not. For 

example, if a processor wants to send a message to 

processor 0, it sends a reference pulse at time t,,f (the 

beginning of a bus cycle) and a select pulse at t,,t = 

tref + (N - 1)~. Since there are (N - 1) unit delays 

in the receiving segments of the reference waveguide, 

these two pulses will coincide at processor 0. In or- 

der for a processor to address processor N - 1, r,,t = 

tref + (N - (N - 1) - 1)~ = rref; i.e., the source pro- 

cessor has to send a reference pulse and a select pulse 

at the same time. Clearly, the two pulses coincide at 

processor N - 1 since there is no delay in its receiving 

segment of the reference waveguide. 

Presumably, there are some uncertainties in the tim- 

ings. A pulse traveling from one processor to the next 

will not take a time exactly t. These errors may ac- 

cumulate when the number of processors is large. 

Because the system relies on the precise timings for 

addressing messages, the error will eventually prohibit 

further scaling. This scalability problem is discussed 

in [5] and is called synchronization error by the au- 

thors of IS]. Some experiments have been carried out 

and the results indicate that large variations (of the 

order of one half of a pulse width) can be tolerated 

without significant degradation of the coincident sig- 

nal [5]. For single-mode fibers with a length of a few 

kilometers, the synchronization error is small enough 

and can be tolerated. Hence, using current technology, 

a system using a few thousands of processors will not 

present any problem. 

Clearly, a bus cycle is proportional to the length of 

the bus. However, since the optical transmission rate 

is much higher than the processing speed of an elec- 

tronic processor, a bus cycle is of the same order of 

magnitude as an internal operation of an electronic 

processor even for a system with a few thousands of 

processors [9]. Many authors assume that a step is ei- 

ther an internal operation or a bus cycle. We adopt this 

method of specifying the time complexity as a num- 

ber of steps. For more details on the time complexity 

issue, see [8,9,17,21]. 

In Section 3, we discuss the quicksort algorithm 

on the LARPBS in detail. Some basic data movement 

operations such as broadcast and binary summation 
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are discussed. Rigorous time analysis is also carried 

out for the algorithm. 

3. The quicksort algorithm 

As seen from the previous discussion, the LARPBS 

can be dynamically reconfigured into several 

LARPBSs of smaller size and each LARPBS can op- 

erate independently. Because of this property of the 

LARPBS model, many divide-and-conquer problems 

can be solved naturally and efficiently. In the follow- 

ing, we use quicksort as an example to show how to 

implement it on the LARPBS model. The purpose is to 

show that the LARPBS model is excellently suitable 

for quicksort, and other divide-and-conquer problems 

can also be solved efficiently in a similar fashion. 

Consider a linear array with a reconfigurable 

pipelined optical bus of size N. The input is assumed 

to be a collection A of N integer numbers. We wish 

to sort the N elements in A. In the following presen- 

tation, we assume that the N numbers are distinct. We 

can assume the numbers are distinct without loss of 

generality since if we are given arbitrary numbers x0, 

x1,. . -9 XN_ 1, we can replace xi by (xi, i) and define 

an order of the tuples by (xi, i) < (xj, j) if xi < xj 

orifxi =xj andi <j. 

In this paper, we present an implementation of 

quicksort algorithm on the LARPBS model of size 

N in O(log N) expected time. Our quicksort algo- 

rithm proceeds along lines similar to those in [ 11. The 

divide-and-conquer strategy is applied to solve the 

sorting problem efficiently. 

Suppose that C is the input array for a call to our 

sorting algorithm. In every iteration, we partition the 

set C into three disjoint subsets 

Cl = {c E c I c < u}, 

c2 = (c E c I c = v}, 

c3 = (c E c 1 c > v}, 

where u is the pivot value of C. Since all data elements 

are distinct, the size of C2 is always 1. 

We move all elements in Cl to the left-hand side of 

the array and move all elements in C3 to the right-hand 

side of the array. Then, we divide the array into three 

smaller subarrays each with a size of ]Cr 1, ]C2] and 

]C3 1, respectively, and apply the same algorithm to the 

two subarrays containing Cl or C3. Since the element 

in C2 is larger than all elements in Cl and smaller 

than all elements in C3, it is in the right place. In this 

manner we can replace the given problem by two same 

problems of smaller size. Notice that the two problems 

can be solved concurrently on two subarrays. This 

process is continued until all subarrays have only one 

element left and we complete sorting set A. The whole 

algorithm is spelled out in algorithm QUZCKSORT. 

Algorithm QUICKSORT(D, N) 

Input: A data vector D of N distinct elements are 

distributed in a linear array with a reconfigurable 

pipelined bus of size N; i.e., each processor contains 

a data item of the vector D. 

Output: The element in the data vector D is in sorted 

order. 

(1) In this step, we want to select a pivot number so 

that we can divide the current set into three sub- 

sets. Each processor in the subarray sends a ref- 

erence pulse at time tref (the beginning of a bus 

cycle) and a select pulse at time tsel = tref + 

(N - i - l)w, where i is its processor index. A 

processor also sends a message frame containing 

its own index through the message waveguide. In 

other words, every processor tries to address it- 

self. However, only the processor which has the 

largest index in the subarray will be successful in 

detecting a coincidence of its own reference and 

select pulses in its receiving segment. All other 

processors will fail. This can be seen as follows. 

The select pulse sent by the processor whose in- 

dex is the largest in the subarray passes no delay 

in the transmitting segments. Since there are no 

delays in the transmitting segments and receiving 

segments for processor with the largest index in 

the subarray, the two pulses of its own will meet 

at the processor. For all other processors, their 

select pulses propagate through at least one de- 

lay in the transmitting segments and thus will not 
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n * 

(2) 

Fig. 6. Switch settings for a broadcast operation. 

coincide with their reference pulses. Thus, a pro- 

cessor which detects a coincidence of a reference 

pulse and a select pulse reads the message. If a 

processor receives a message containing its own 

index, its data item can be used as the pivot num- 

ber in the next step. Otherwise, the received data 

item is not used in the next step. 

The processor which is selected in step (1) broad- 

casts its data item D and all processors put the re- 

ceived data into their local memory m, which will 

be used in the following steps as the pivot number. 

For a broadcast operation, every processor will 

have to detect a coincidence of the reference pulse 

and the select pulse in its receiving segment. This 

can be done as follows. All conditional switches 

are set to straight, thus introducing no delay on 

the transmitting segments (see Fig. 6). The source 

processor sends a reference pulse at the beginning 

of its address frame. As described before, pres- 

ence or the absence of a select pulse determines 

if a processor should read the corresponding mes- 

sage or not. Thus, if the source processor sends 

N consecutive select pulses in its address frame 

on the select waveguide as shown in Fig. 7, ev- 

ery processor on the bus detects a double-height 

pulse and thus reads the message. This is clearly a 

broadcast operation. For example, when processor 

0 in Fig. 6 wants to broadcast a message, it sends 

a reference pulse at the beginning of its address 

frame on the reference bus and five select pulses 

in its address frame on the select bus. The first 

select pulse will meet the reference pulse at pro- 

cessor 4 since both pulses meet no delay on their 

buses. The second select pulse will meet the ref- 

Time e 
N-l 1 0 

Se1 

Ref ___________ _____________._ 

(3) 

(4) 

Fig. 7. Address frames for broadcasting. 

erence pulse at processor 3 since the select pulse 

meets no delay on the select bus and the reference 

pulse goes through one delay on the reference bus. 

The last select pulse will meet the reference pulse 

at processor 0 since the select pulse meets no de- 

lay on the select bus and the reference pulse goes 

through four delays on the reference bus. 

In this step, all active processors compare the re- 

ceived value m with local data item D. If m > D, 

B is set to 0, indicating that the local data item 

is in CI ; otherwise, set B to 1, meaning that the 

local data item is in C2 or C3. 

Perform a binary summation over B and put the 

sum in s. Clearly, s = IC2I + IC3(. Now, let us 

explain how to perform a binary operation on a 

processor array with an optical bus in one bus 

cycle. Initially, a binary sequence ai = 0 or 1 

for 0 6 i < N is distributed in the array with 

processor i holding ai. 

First, processor i, 1 < i 6 N - 1, sets its switch 

S(i) on the transmitting segment to straight if ai = 

1, and cross if a; = 0. Second, processor 0 injects 

a reference and select pulse on the reference bus 

and the select bus, respectively, at the beginning of 

a bus cycle. Note that all other processors do not 

put any pulse or message on the three waveguides. 

If processor j is selected (i.e., processor j detects 

the coincidence of the reference pulse and the se- 

lect pulse), the sum of the N - 1 binary numbers, 

ai,forl<i<N-l,isequaltoj.Thebasicidea 

is to delay the select pulse whenever it passes a 

processor with a value of 0. When all N - 1 pro- 

cessors have a value of 0, all switches on the bus 
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are set to cross and thus introduce N - I unit de- 

lays. As a result, the two pulses will coincide at 

processor 0. When j processors have a value of 1, 

j switches on the bus are set to straight and thus 

introduce (N - j - 1) unit delays in the trans- 

mitting segments of the select waveguides. Since 

there are always (N - j - 1) unit delays on the re- 

ceiving segments of the reference waveguides for 

processor j, the two pulses will coincide at pro- 

cessor j. Finally, processor j sends its index to 

processor 0. After obtaining j = C;“--r ’ ai, pro- 

cessor 0 gets the sum of the N numbers, ai, for 

0 6 i < N - 1, by adding its local binary number 

au to the number j. 

Fig. 2 shows an example of adding five binary 

numbers 1, 0, 1, 1, and 0 on the LARPBS of size 

5 and its corresponding conditional switch config- 

uration. Since the binary numbers in processors 

14 are 0110, respectively, conditional switches 

S(1) and S(4) are set to cross, and S(2) and S(3) 

are set to straight. The pulse injected from proces- 

sor 0 passes through two unit delays on the select 

waveguide due to the conditional delays caused 

by S(1) and S(4). On the other hand, the pulse 

passes through two unit delays on the reference 

waveguide when it arrives at processor 2. Hence, 

processor 2 detects the coincidence of the refer- 

ence pulse and the select pulse. All other proces- 

sors do not detect the coincidence. After receiving 

a value of 2 from processor 2, processor 0 adds 

its local number au = 1 to 2 and gets the sum, 3, 

of the five binary numbers. 

(5) Calculate lCl1 = N - s, IC21 = 1, and (C31 = 

s - 1. Here, 1Ci 1 is the size of the set Ci for i = 

1,2,3. 

(6) In this step, we want to perform a split operation. 

Before we formally describe the data movement 

operation, we first introduce an operation called 

compression. When the number of active elements 

in the array is s, the compression algorithm will 

move these active elements to processors N-s - 1, 

N-s,..., N - 1. In other words, the compres- 

sion algorithm moves all active data items to the 

right-hand side of the array. Active elements are 

labeled based on certain value of their local vari- 

ables. A processor with an active element is re- 

ferred to as active processor. For example, we can 

label all processors with B(i) = 1 as active pro- 

cessors. In the following discussion, we assume 

that all active processors have their local variables 

X(i) set to 1. The compression algorithm is imple- 

mented as follows. First, processor i sets its local 

switch S(i) to cross if X(i) = 1, and to straight if 

X(i) = 0. Then, processor i whose X(i) = 1 in- 

jects a reference pulse at time tref (the beginning 

of a bus cycle) on the reference waveguide and 

a select pulse at time tsel = tref + N - 1 on the 

select waveguide. A processor also sends a mes- 

sage frame containing its local data in memory 

location D through the message waveguide dur- 

ing the bus cycle. Processors with X(i) = 0 do 

not put any pulse or message on the three waveg- 

uides. In other words, every processor with an ac- 

tive element tries to address processor N - 1. The 

select pulse sent by the processor whose index is 

the largest in the active set passes no delay in the 

transmitting segments because all the processors 

to its right are not in the active set and their cor- 

responding switches are set to straight. Thus, the 

two pulses will meet only at processor N - 1, and 

the corresponding message is picked up by pro- 

cessor N - 1. Similarly, the select pulse sent by 

the processor whose index is the second largest in 

the active set passes one conditional delay in the 

transmitting segments because only one processor 

to its right is in the active set and its correspond- 

ing switch is set to cross. Since both the select and 

reference pulses pass one delay on the select and 

reference waveguides when arriving at processor 

N - 2, the two pulses will meet only at proces- 

sor N - 2. Hence, processor N - 2 receives the 

data item from the processor whose index is sec- 

ond largest in the active set. In general, the select 

pulse sent by the processor whose index is the kth 

largest in the active set passes k - 1 conditional 

delays in the transmitting segments on the select 

waveguide because k - 1 processors to its right are 

in the active set and their corresponding switches 

are set to cross. Since both the select and refer- 

ence pulses pass k - 1 delays on the select and 
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reference waveguides when arriving at processor 

N - k, the two pulses will meet only at processor 

N - k. Clearly, this is the compression operation. 

Now, we describe the split operation used in 

this step. Specifically, we want to separate set 

Ct from set C3. In other words, all data ele- 

ments D(i), 0 <i < N - 1, whose B(i) = 1 are 

moved to the upper part of the array PEN(N - s), 

PEN(N - s + I), . . , PEN(N - l), and all data 

elements D(i), O<i 6 N - 1, whose B(i) = 

0 are moved to the lower part of the array 

PE(O), PE(l), . . . , PE(N - s - 2), where s satis- 

fies the following equation: 

N-l 

S= 
c B(k). 

k=O 

In other words, D(i) is moved to D(j) where j = 

N - 1 - cFzt+, B(k) if B(i) = 1, and D(i) is 

moved to D(j) where j = ciz\B(k) if B(i) = 

0. The split operation is performed as follows. 

First, we label processor i whose B(i) = 1 as ac- 

tive; i.e., set X(i) to 1 iff B(i) = 1. We call the 

compression algorithm to move all data elements 

in the active set to the upper part of the array. To 

avoid destroying the original data items in D, we 

put them in a new memory location DI. Second, 

we label all processors whose B(i) = 0 as active; 

i.e., set X(i) to 1 iff B(i) = 0. Hence, Ct becomes 

the current active set. Then, we call the compres- 

sion algorithm to move all data elements in the set 

to the upper part of the array. To avoid destroying 

the data items in D and DI , we put them in a new 

memory location D2. Third, move all data items 

in memory location D2 left ]C2] + ]C3 ( positions. 

This is a normal data transfer operation. Using the 

addressing scheme discussed before, processor h, 

where]C2\+]C3l<h<N-1,sendsitsdataitem 

to processor h - (1 C2 I + IC3 I) by transmitting a 

reference pulse at time trer and a select pulse at 

time r,,r + (N - (h - (jC,l+ IC3l)) - 1)~. Finally, 

we copy all moved data from temporary locations 

Dl or D2 to their corresponding local locations D. 

(7) Now we divide the array into three subarrays. 

The first subarray, i.e., processors 0, 1, . . ., 

]Ct I, contains the elements in Ct. The sec- 

ond subarray contains only processor ICI I + 1. 

The third subarray, i.e., processors ]Ct 1 + ]Cz 1, 

]Ct/+IC2]+1,...,N-1,containstheelements 

in C3. This is done through setting the switches at 

locations ICt I - 1 and ]Ct I to cross. In this step, 

we also change the indices of the third subarray 

so that its indices also start from 0. This can be 

accomplished by updating the index of processor 

i, where (]Ci I -t 1) 6 i < N - 1, to i - (]Ct I + 1). 

Finally, we update the sizes of the two subarrays 

by broadcasting ICI I to all processors in the first 

subarray and broadcasting ]C3 1 to all processors 

in the third subarray. 

(8) In the last step, we recursively call QUICKSORT 

(D, ICI I) on the LARPBS with processors 0, 1, 

., (Cl1 if ]CtI # 1, and QUICKSORT(D, IC3]) 

on the LARPBS with processors ]Ct I + IC2 1, 

Ic1I+lc2l+l,..., N - 1 if IC3] # 1, The al- 

gorithm stops when both Ct and C3 contain one 

element. 

The correctness of the algorithm follows by a 

straightforward induction on the size of the data 

set [I]. Clearly, for each iteration a constant number 

of steps is needed. In the worst case, each iteration 

may reduce the vector size by only one. This hap- 

pens when Cl or C3 is empty. Hence, in the worst 

case a total of O(N) steps are needed. This is bet- 

ter than the sequential quicksort algorithm discussed 

in [l], which has a worst-case time complexity of 

0(N2). The expected time of our quicksort algorithm 

is much better than the sequential algorithm as seen 

below. 

Before we can talk about the expected running time 

of an algorithm, we must agree on what the proba- 

bility distribution of the inputs is. For sorting, a nat- 

ural assumption, and the one we shall make, is that 

every permutation of the set of numbers to be sorted 

is equally likely to appear as an input. Under such a 

condition, it is well known that the expected number 

of iterations required by QUICKSORT is O(log N) 

[ 11. The total expected time of the sorting algorithm 

is the product of the average number of iterations and 

the time spent in each iteration. Therefore, we have 

the following theorem: 
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Theorem 1. The QUICKSORT algorithm sorts a data 

set of N elements on the LARPBS model of size N 

in O(logZ N) steps on average and uses a constant 

amount of memory in each processor: 

In reality, the number of data elements does not 

always match the size of the system. In many cases, 

the number of data elements is much larger than the 

size of the system since the system size is fixed once 

a machine is built. Luckily, many of the operations on 

the LARPBS are scalable when this situation occurs. 

Assume that we have a data set of N elements and P 

processors on the LARPBS. Also assume that each 

processor contains N/P data elements. It has been 

reported that many basic operations such as broadcast 

and binary summation are scalable on the LARPBS 

model and can be executed in N/P steps [35]. Thus, 

we can adapt our QUICKSORT algorithm to obtain a 

scalable quicksort algorithm. Since the average num- 

ber of iterations remains the same, and each iteration 

uses O(N/P) steps now, we obtain the following 

result: 

Theorem 2. The modi$ed QUICKSORT algorithm 

sorts a data set of N elements on the LARPBS model 

of size P in O((N/P) log2 N) steps on average and 

uses O(N/p) memory elements in each processor 

Clearly, the algorithm is also scalable. 

4. Conclusions 

In this paper, a new computational model called 

LARPBS is introduced. In this model, messages can 

be transmitted in a pipelined fashion on an optical bus 

system and the bus can be dynamically reconfigured 

into independent segments to satisfy different com- 

munication requirements during a computation. Here, 

a quicksort algorithm with an average of O(log,! N) 

steps is designed for this model and we show that the 

algorithm can be executed quickly. We also show that 

the quicksort algorithm is scalable when the number 

of processors in the system is smaller than the number 

of data elements. 

In fact, many divide-and-conquer problems can be 

solved efficiently using a similar scheme. We first 

need to partition a problem into several subproblems. 

Then, we map these subproblems onto the bus system 

and reconfigure the system into several subsystems ac- 

cordingly. Now, we can solve these subproblems on 

the subsystems recursively until the problem is solved 

completely. This again shows that reconfiguration of 

an optical bus system is very useful when used to solve 

a divide-and-conquer problem. 

The new model proposed in this paper is not an 

optical implementation of a traditional reconfigurable 

bus system. They are fundamentally different. For ex- 

ample, on the LARPBS, a binary summation can be 

performed in a constant number of steps while it is 

impossible to accomplish such task on a traditional re- 

configurable bus system in a single step. We believe 

that many parallel algorithms can be implemented on 

the LARPBS model. However, pipelined bus intercon- 

nection may require us to rethink how we write par- 

allel algorithms. Fully exploring the capabilities of an 

optical bus requires careful mapping of data, an ef- 

ficient addressing mechanism, and a set of efficient 

basic data movement operations. 

The LARPBS model was first proposed in a prelim- 

inary version of the paper [25]. Since then, many new 

results have been achieved [26,27,33]. Several basic 

data movement operations and some image process- 

ing problems have been implemented on the LARPBS 

model [26]. Some matrix operations have also been 

proposed using the LARPBS model [15]. Scalability 

analysis on the LARPBS model is discussed in [35], 

and the results indicate that many commonly used ba- 

sic algorithms are scalable on the LARPBS model. 

This implies that algorithms using only these basic al- 

gorithms are also scalable. 

Because the time spent in a bus cycle is proportional 

to the size of the bus, it is not truly a constant. To 

reduce the time in a bus cycle, the linear optical bus 

system has been extended to two-dimensional meshes 

and the new system is called arrays with reconfig- 

urable optical buses (AROB) in [27,33]. Several inte- 

ger sorting problems have been solved on the AROB 

model [28]. Matrix operations have also been stud- 

ied on the same model [29]. All these results indicate 
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that arrays with reconfigurable pipelined buses are 

powerful and practical computational models. Future 

research include design and analysis of more basic op- 

erations on the LARPBS, study of higher-dimensional 

meshes with reconfigurable optical buses, and scala- 

bility analysis of these systems. We are doing research 

in these directions. 
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