
FGCS
OUTURE

QENERATIoN
@~MPUTER

OYSTEMS
ELSEVIER Future Generation Computer Systems 13 (1997/98) 501-5 13

Efficient and scalable quicksort on a linear array

with a reconfigurable pipelined bus system

Yi Pan a,*, Mounir Hamdi b, * , Keqin Li c,2
’ Department of Computer Science, University of Dayton, Dayton, OH 45469-2160, USA

b Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
’ Department of Mathematics and Computer Science, State University of New York, New Paltz, NY 12561-2499, USA

Received July 1995; received in revised form October 1996; accepted June 1997

Abstract

Based on the current fiber optic technology, a new computational model, called a linear array with a reconfigurable pipelined

bus system (LARPBS), is proposed in this paper. A parallel quicksort algorithm is implemented on the model, and its time
complexity is analyzed. For a set of N numbers, the quicksort algorithm reported in this paper runs in O(log, N) average time
on a linear array with a reconfigurable pipelined bus system of size N. If the number of processors available is reduced to P,

where P < N, the algorithm runs in O((N/ P) log, N) average time and is still scalable. Besides proposing a new algorithm
on the model, some basic data movement operations involved in the algorithm are discussed. We believe that these operations
can be used to design other parallel algorithms on the same model. Future research in this area is also identified in this paper.

0 1998 Elsevier Science B.V.

Keywords; Complexity; Optics; Parallel algorithm; Reconfigurable pipelined bus; Sorting

1. Introduction

* Corresponding author. E-mail: pan@cps.udayton.edu. Sup-
ported in part by the National Science Foundation under Grants

CCR-9211621 and CCR-9503882, the Air Force Avionics

Laboratory of Wright Laboratory under Grant F33615-C-2218,

an Ohio Board of Regents Research Challenge Grant, and an

Ohio Board of Regents Investment Fund Competition Grant.

Also supported by the AFOSR Summer Faculty Research

Program.

’ E-mail: hamdi@cs.ust.hk. Supported in part by the Hong

Kong Research Grant Council under Grant RGC/HKUST

619/94E.

2E-mail: li@mcs.newpaltz.edu. Supported in part by the

NASA/University Joint Venture (JOVE) in Research Program

of National Aeronautics and Space Administration and the

Research Foundation of State University of New York. Also

supported by the 1996 NASA/ASEE Summer Faculty Fellow-

ship Program.

In a multiprocessor system, processors can be con-

nected via an interconnection network such as hyper-

cube and mesh [121. One drawback of these networks

is that they provide limited connectivity between pro-

cessors and their communication diameter (the max-

imum distance between processors) is proportional

to the size of the system [10,23]. Hence, increasing

the size of these networks does not result in a fur-

ther decrease in the time complexities of most parallel

algorithms running on them. The time complexities

are lower bounded by the communication diameter of

these networks. One way to overcome this problem

is to use electronic buses for communication since

0167.739X/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved

PII SO 167-739X(97)0001 3-7

502 K Pan et al./Future Generation Computer Systems 13 (1997/98) 501-513

they provide direct communication between any two

processors in the system [131.

Processor arrays with buses have become the focus

of much interest due to recent advances in VLSI and

fiber optic technology. Arrays with a global bus [4],

arrays with multiple buses [13], and arrays with re-

configurable buses [18,19,22] have been proposed for

efficient computations. In an array with reconfigurable

buses, messages can be transmitted concurrently when

the bus is partitioned into many segments, and the di-

ameter problem in a point-to-point network disappears

when all segments are reconfigured as a single global

bus. Many different models have been proposed and

many efficient algorithms have been implemented on

such models. However, when there is a large amount

of message transfer between different sections of the

network, the bus segments themselves become a po-

tential bottleneck.

Fiber optic communications offer a combination

of high bandwidth and low error probability. Several

researchers have proposed using optical interconnec-

tions to connect processors in a parallel computer

system [2,7,16,17]. Among them, the distributed-

memory SIMD (single instruction multiple data) com-

puter with pipelined optical buses has received a lot of

attention [9,14,17,20,30-321 due to its simplicity and

low cost. In such a system, messages can be transmit-

ted concurrently on a pipelined optical bus without

partitioning the bus into several segments while the

time delay between the furthest processors is only the

end-to-end propagation delay of light over a waveg-

uided bus. This design integrates the advantages of

both optical transmission and electronic computation.

Several parallel algorithms such as the Hough trans-

form [20], singular value decomposition [24], order

statistics [21], sorting [8], and some numerical al-

gorithms [l l] have been proposed for arrays with

a pipelined bus system. The preliminary work indi-

cates that arrays with pipelined buses are very efficient

for parallel computation due to the high bandwidth

within a pipelined bus system. All the previous works

are based on fixed configuration. However, different

algorithms require different communication patterns.

Some algorithms may even need different communica-

tion patterns during different phases of the same com-

putation. Hence, introducing array reconfiguration can

improve the efficiency of many algorithms. In this pa-

per, we propose a new computational model termed

linear arrays with a reconfigurable pipelined bus sys-

tem (LARPBS) based on ideas of pipelined optical

bus systems and processor array reconfiguration [25].

In such a model, messages can be transmitted concur-

rently on a bus in a pipelined fashion and a pipelined

bus can be reconfigured dynamically under program

control to suit communication needs. In order for a

parallel algorithm to be efficient, times for both local

operations and communication have to be small. In the

LARPBS model, the communication time is the num-

ber of bus cycles used in an algorithm. An efficient

sorting algorithm will be proposed for the LARPBS

and its time complexity will be analyzed in this paper.

It is shown that the time complexity of the algorithm

compares favorably with those implemented on arrays

with traditional reconfigurable electronic buses.

2. The LARPBS model

Before describing the LARPBS model, we first

explain the communication mechanism of a pipelined

bus system based on fiber optic technology. A

pipelined optical bus system uses optical waveg-

uides instead of electrical buses to transfer messages

among electronic processors. The advantages of using

waveguides can be seen as follows, Besides the high

propagation speed of light, there are two important

properties of optical signal (pulse) transmission on

an optical bus: unidirectional propagation and pre-

dictable propagation delay per unit length. These two

properties enable synchronized concurrent access of

an optical bus in a pipelined fashion [9,17,30,31].

This, combined with the abilities of a bus structure

to do efficient broadcasting or multicasting, makes

the architecture suitable for many applications that

involve intensive communication operations.

Fig. 1 shows an SIMD linear array in which elec-

tronic processors are connected with an optical bus.

Each processor is connected to the bus with two di-

rectional couplers, one for transmitting on the upper

segment and the other for receiving from the lower

YI Pan et al./Future Generation Computer Systems 13 (1997/98) 501-513 503

0 Processor 0 Directional Coupler

Fig. 1. A linear optical bus system of n processors.

cl I
\

Reference Pulse Select Pulse Delay

Fig. 2. An optical bus with delays added.

segment of the bus [9,17,30,31]. The optical bus con-

tains three identical waveguides, one for carrying mes-

sages (the message waveguides) and the other two

for carrying address information (the reference waveg-

uide and the select waveguide), as shown in Fig. 2.

For the purpose of simplicity, the message waveg-

uide, which resembles the reference waveguide, has

been omitted from the figure. Messages are organized

as fixed-length message frames. Note that optical sig-

nals propagate unidirectionally from left to right on

the upper segment and from right to left on the lower

segment. This bus system is also referred to as the

folded-bus connection in [9].

Although the system uses a physical line intercon-

nect, it can simulate many communication networks

such as binary trees, rings, and shuffle-exchange net-

works [9,17]. Thus, many complicated communica-

tion patterns can be implemented on the optical bus

system. In fact, active research is being done to em-

ulate different network topologies on the optical bus

system [26,33,35].

Let w be the pulse duration in seconds and Cb the

velocity of light in these waveguides. Define a unit de-

lay A to be the spatial length of a single optical pulse,

i.e., A = w x cb. Initially, processors are connected

to these three waveguides such that between any two

given processors, the same length of fiber is used on all

three waveguides. Hence, the propagation delays be-

tween two processors are the same for all three waveg-

uides. A bus cycle for an optical bus is defined as

the end-to-end propagation delay on the bus; i.e., the

time taken for an optical signal to propagate through

the entire bus. If t is the time taken for a signal to

traverse the optical distance between two consecutive

processors on the bus, then the length of a bus cycle

for the system of Fig. 1 is 2Nt. We then add one unit

delay A, shown as a loop in Fig. 2, between any two

processors on the receiving segments of the reference

waveguides and of the message waveguides. Each loop

is an extra segment of a fiber and the amount of delay

added can be accurately chosen based on the length

of the segment. As a result, the propagation delays on

the receiving segments of the select waveguide and the

reference waveguides are no longer the same. Finally,

we add a conditional delay A between any two proces-

sors i and i + 1, where 0 6 i 6 N - 2, on the transmit-

ting segments of the select waveguides (Fig. 2). The

switch between processor i and i + 1 is called S(i + 1)

and is local to processor i + 1. Thus, every proces-

sor has its own switch except processor 0. The condi-

tional delays can be implemented using 2 x 2 optical

switches such as the Ti : LiNbO3 switches used in an

optical computer [3]. Each switch can be set by the lo-

cal processor to two different states: straight or cross

as shown in Fig. 3. When a switch is set to straight, it

takes t time for an optical signal on the transmitting

segments of the select waveguides to propagate from

one processor to its nearest neighbor. When a switch

is set to cross, a delay w is introduced and such prop-

agation will take t + o time. Clearly, the maximum

n (7

--W---b _I-_

Fig. 3. Conditional delays implemented using 2 x 2 optical

switches.

504 Z Pan et al./Future Generation Computer Systems 13 (1997/98) 501-513

delay that the switches can introduce is the duration

of N - 1 pulses.

Messages transmitted by different processors may

overlap with each other even if they propagate unidi-

rectionally on the bus. We call these message over-

lappings transmission conjlicts. Assume each message

has b binary bits, each bit represented by an optical

pulse, with the existence of a pulse for 1 and the ab-

sence for 0. To ensure that there are no transmission

conflicts, the following condition has to be satisfied:

r > bw,

where t is the time taken for a signal to traverse the

optical distance between two consecutive processors

on the bus, and w is the pulse duration. Obviously,

when b is large, t has to be large too. This in turn

means a longer bus cycle. Note that the above condi-

tion ensures that each message can fit into a pipeline

cycle such that in a bus cycle, up to N messages can

be transmitted by processors simultaneously without

collisions on the bus. In a parallel array, messages

normally have very short length; i.e., b is very small.

Thus, in the following discussion, we assume that the

above condition is always satisfied and that no trans-

mission conflicts are possible as long as all proces-

sors are synchronized at the beginning of each bus

cycle.

Now let us describe the LARPBS model. In the

LARPBS, we insert an optical switch on each sec-

tion of the transmitting bus and receiving bus. Thus,

each processor has six more Iocal switches besides its

switch for conditional delay; three on its three receiv-

ing segments and three on its three transmitting seg-

ments. The switches on the receiving and transmitting

segments between processors i and i + 1 are called

RSR(i) and RST(i), respectively, and are local to pro-

cessor i as shown in Fig. 4. Here, RSR(i), 0 < i < N,

are 2 x 1 optical switches, and RST(i), O<i < N,

are 1 x 2 optical switches. In the following discussion,

these switches will be called reconfigurable switches

due to their function. When all switches are set to

straight, the bus system operates as a regular pipelined

bus system. When RSR(i) and RST(i) are set to cross,

the whole bus system is split into two separate sys-

tems, one consisting of processors 0, 1, . . ., and i and

Fig. 4. The LARPBS model of size 6 with two subarrays.

the other consisting of i + 1, i + 2,. . ., N - 1. Be-

cause of the total delay for a signal passing the trans-

mitting segment, the optical fiber between RST(i) and

RSR(i), and the receiving segment is made to be equal

to t, the array with processors O-i can operate as a

regular linear array with a pipelined bus system; so

does the array with processors i + 1 to N - 1. Fig. 4

shows the LARPBS model with six processors. The ar-

ray is split into two subarrays with the first one having

four processors and the second one having two pro-

cessors. In the figure, only one waveguide is shown.

Also, conditional switches are omitted in the figure to

avoid confusion.

Several time-division switching methods can be ap-

plied to route messages in an optical bus system. In the

first approach, each processor is assigned a fixed time

slot and transmits or receives a message during that

particular time slot. A sequence of time slots formed

on the transmitting segment of a bus is rearranged via

a time-slot interchanger [34], and then forwarded to

the receiving segment. Each time slot of the output

sequence contains a message destined to the proces-

sor corresponding to that slot. In the second approach,

each processor is assigned a fixed transmitting time

slot. An SIMD environment is assumed in this case.

Hence, each processor knows which processor is send-

ing a message to it and knows the time slot that con-

tains the message [9,17]. The last approach is to use

a coincident pulse technique [6,8,31]. Using this ap-

proach, the relative time delay of a select pulse and

a reference pulse is determined so that they will co-

incide, thus producing a double-height pulse, only at

receiver i . By properly adjusting the detecting thresh-

old of the detector at processor i, this double-height

pulse can be detected, thereby addressing i.

I! Pan et al./Future Generation Computer Systems 13 (1997/98) 501-513 505

In this paper, the same approach to the coincident

pulse technique is used to route messages or to broad-

cast messages on the bus. The switches on the send-

ing segments are used to conditionally delay the select

pulses and can be closed or opened by the local pro-

cessors (see Fig. 2). Now let us discuss in detail how

to send a message from a source processor to a des-

tination processor on an SIMD array using the coin-

cidence pulse technique. First, set all switches on the

transmitting segments to straight so that no delay is

introduced in the switches on the transmitting seg-

ments of the select waveguides. A source processor

sends a reference pulse at time rrer (the beginning of

a bus cycle) on the reference waveguide and a select

pulse at time t,,t on the select waveguide. The source

processor also sends a message frame, on the message

waveguide, which propagates synchronously with the

reference pulse. Whenever a processor detects a co-

incidence of a reference pulse and a select pulse, it

reads the message frame. In other words, in order for

processor i to send a message to processor j, we need

to have the two pulses coincide at processor j. This

happens if and only if

&,I = t,,f + (N - j - lb,

where 0 6 i, j < N. Fig. 5 shows an address frame

relative to a reference pulse for addressing processor

j. Here, the select pulse is delayed for a time of (N -

j - 1)o relative to the reference pulse. Hence, the two

pulses meet at processor j after the reference pulse

goes through N - j - 1 delays.

In conclusion, for a given reference pulse transmit-

ted at time tref, the presence of a select pulse at time

Time *
N-l N-j- 1 1 0

Sel

Ref

Fig. 5. Address frames.

tref + (N - j - 1)~ will address processor j while

the absence of a select pulse at that time will not. For

example, if a processor wants to send a message to

processor 0, it sends a reference pulse at time t,,f (the

beginning of a bus cycle) and a select pulse at t,,t =

tref + (N - 1)~. Since there are (N - 1) unit delays

in the receiving segments of the reference waveguide,

these two pulses will coincide at processor 0. In or-

der for a processor to address processor N - 1, r,,t =

tref + (N - (N - 1) - 1)~ = rref; i.e., the source pro-

cessor has to send a reference pulse and a select pulse

at the same time. Clearly, the two pulses coincide at

processor N - 1 since there is no delay in its receiving

segment of the reference waveguide.

Presumably, there are some uncertainties in the tim-

ings. A pulse traveling from one processor to the next

will not take a time exactly t. These errors may ac-

cumulate when the number of processors is large.

Because the system relies on the precise timings for

addressing messages, the error will eventually prohibit

further scaling. This scalability problem is discussed

in [5] and is called synchronization error by the au-

thors of IS]. Some experiments have been carried out

and the results indicate that large variations (of the

order of one half of a pulse width) can be tolerated

without significant degradation of the coincident sig-

nal [5]. For single-mode fibers with a length of a few

kilometers, the synchronization error is small enough

and can be tolerated. Hence, using current technology,

a system using a few thousands of processors will not

present any problem.

Clearly, a bus cycle is proportional to the length of

the bus. However, since the optical transmission rate

is much higher than the processing speed of an elec-

tronic processor, a bus cycle is of the same order of

magnitude as an internal operation of an electronic

processor even for a system with a few thousands of

processors [9]. Many authors assume that a step is ei-

ther an internal operation or a bus cycle. We adopt this

method of specifying the time complexity as a num-

ber of steps. For more details on the time complexity

issue, see [8,9,17,21].

In Section 3, we discuss the quicksort algorithm

on the LARPBS in detail. Some basic data movement

operations such as broadcast and binary summation

506 Z Pan et al./Future Generation Computer Systems 13 (1997/98) Sol-513

are discussed. Rigorous time analysis is also carried

out for the algorithm.

3. The quicksort algorithm

As seen from the previous discussion, the LARPBS

can be dynamically reconfigured into several

LARPBSs of smaller size and each LARPBS can op-

erate independently. Because of this property of the

LARPBS model, many divide-and-conquer problems

can be solved naturally and efficiently. In the follow-

ing, we use quicksort as an example to show how to

implement it on the LARPBS model. The purpose is to

show that the LARPBS model is excellently suitable

for quicksort, and other divide-and-conquer problems

can also be solved efficiently in a similar fashion.

Consider a linear array with a reconfigurable

pipelined optical bus of size N. The input is assumed

to be a collection A of N integer numbers. We wish

to sort the N elements in A. In the following presen-

tation, we assume that the N numbers are distinct. We

can assume the numbers are distinct without loss of

generality since if we are given arbitrary numbers x0,

x1,. . -9 XN_ 1, we can replace xi by (xi, i) and define

an order of the tuples by (xi, i) < (xj, j) if xi < xj

orifxi =xj andi <j.

In this paper, we present an implementation of

quicksort algorithm on the LARPBS model of size

N in O(log N) expected time. Our quicksort algo-

rithm proceeds along lines similar to those in [11. The

divide-and-conquer strategy is applied to solve the

sorting problem efficiently.

Suppose that C is the input array for a call to our

sorting algorithm. In every iteration, we partition the

set C into three disjoint subsets

Cl = {c E c I c < u},

c2 = (c E c I c = v},

c3 = (c E c 1 c > v},

where u is the pivot value of C. Since all data elements

are distinct, the size of C2 is always 1.

We move all elements in Cl to the left-hand side of

the array and move all elements in C3 to the right-hand

side of the array. Then, we divide the array into three

smaller subarrays each with a size of]Cr 1,]C2] and

]C3 1, respectively, and apply the same algorithm to the

two subarrays containing Cl or C3. Since the element

in C2 is larger than all elements in Cl and smaller

than all elements in C3, it is in the right place. In this

manner we can replace the given problem by two same

problems of smaller size. Notice that the two problems

can be solved concurrently on two subarrays. This

process is continued until all subarrays have only one

element left and we complete sorting set A. The whole

algorithm is spelled out in algorithm QUZCKSORT.

Algorithm QUICKSORT(D, N)

Input: A data vector D of N distinct elements are

distributed in a linear array with a reconfigurable

pipelined bus of size N; i.e., each processor contains

a data item of the vector D.

Output: The element in the data vector D is in sorted

order.

(1) In this step, we want to select a pivot number so

that we can divide the current set into three sub-

sets. Each processor in the subarray sends a ref-

erence pulse at time tref (the beginning of a bus

cycle) and a select pulse at time tsel = tref +

(N - i - l)w, where i is its processor index. A

processor also sends a message frame containing

its own index through the message waveguide. In

other words, every processor tries to address it-

self. However, only the processor which has the

largest index in the subarray will be successful in

detecting a coincidence of its own reference and

select pulses in its receiving segment. All other

processors will fail. This can be seen as follows.

The select pulse sent by the processor whose in-

dex is the largest in the subarray passes no delay

in the transmitting segments. Since there are no

delays in the transmitting segments and receiving

segments for processor with the largest index in

the subarray, the two pulses of its own will meet

at the processor. For all other processors, their

select pulses propagate through at least one de-

lay in the transmitting segments and thus will not

E Pan et al/Future Generation Computer Systems 13 (1997/98) 501-513 501

n *

(2)

Fig. 6. Switch settings for a broadcast operation.

coincide with their reference pulses. Thus, a pro-

cessor which detects a coincidence of a reference

pulse and a select pulse reads the message. If a

processor receives a message containing its own

index, its data item can be used as the pivot num-

ber in the next step. Otherwise, the received data

item is not used in the next step.

The processor which is selected in step (1) broad-

casts its data item D and all processors put the re-

ceived data into their local memory m, which will

be used in the following steps as the pivot number.

For a broadcast operation, every processor will

have to detect a coincidence of the reference pulse

and the select pulse in its receiving segment. This

can be done as follows. All conditional switches

are set to straight, thus introducing no delay on

the transmitting segments (see Fig. 6). The source

processor sends a reference pulse at the beginning

of its address frame. As described before, pres-

ence or the absence of a select pulse determines

if a processor should read the corresponding mes-

sage or not. Thus, if the source processor sends

N consecutive select pulses in its address frame

on the select waveguide as shown in Fig. 7, ev-

ery processor on the bus detects a double-height

pulse and thus reads the message. This is clearly a

broadcast operation. For example, when processor

0 in Fig. 6 wants to broadcast a message, it sends

a reference pulse at the beginning of its address

frame on the reference bus and five select pulses

in its address frame on the select bus. The first

select pulse will meet the reference pulse at pro-

cessor 4 since both pulses meet no delay on their

buses. The second select pulse will meet the ref-

Time e
N-l 1 0

Se1

Ref ___________ _____________._

(3)

(4)

Fig. 7. Address frames for broadcasting.

erence pulse at processor 3 since the select pulse

meets no delay on the select bus and the reference

pulse goes through one delay on the reference bus.

The last select pulse will meet the reference pulse

at processor 0 since the select pulse meets no de-

lay on the select bus and the reference pulse goes

through four delays on the reference bus.

In this step, all active processors compare the re-

ceived value m with local data item D. If m > D,

B is set to 0, indicating that the local data item

is in CI ; otherwise, set B to 1, meaning that the

local data item is in C2 or C3.

Perform a binary summation over B and put the

sum in s. Clearly, s = IC2I + IC3(. Now, let us

explain how to perform a binary operation on a

processor array with an optical bus in one bus

cycle. Initially, a binary sequence ai = 0 or 1

for 0 6 i < N is distributed in the array with

processor i holding ai.

First, processor i, 1 < i 6 N - 1, sets its switch

S(i) on the transmitting segment to straight if ai =

1, and cross if a; = 0. Second, processor 0 injects

a reference and select pulse on the reference bus

and the select bus, respectively, at the beginning of

a bus cycle. Note that all other processors do not

put any pulse or message on the three waveguides.

If processor j is selected (i.e., processor j detects

the coincidence of the reference pulse and the se-

lect pulse), the sum of the N - 1 binary numbers,

ai,forl<i<N-l,isequaltoj.Thebasicidea

is to delay the select pulse whenever it passes a

processor with a value of 0. When all N - 1 pro-

cessors have a value of 0, all switches on the bus

508 E Pan et al./Future Generation Computer Systems 13 (1997/98) 501-513

are set to cross and thus introduce N - I unit de-

lays. As a result, the two pulses will coincide at

processor 0. When j processors have a value of 1,

j switches on the bus are set to straight and thus

introduce (N - j - 1) unit delays in the trans-

mitting segments of the select waveguides. Since

there are always (N - j - 1) unit delays on the re-

ceiving segments of the reference waveguides for

processor j, the two pulses will coincide at pro-

cessor j. Finally, processor j sends its index to

processor 0. After obtaining j = C;“--r ’ ai, pro-

cessor 0 gets the sum of the N numbers, ai, for

0 6 i < N - 1, by adding its local binary number

au to the number j.

Fig. 2 shows an example of adding five binary

numbers 1, 0, 1, 1, and 0 on the LARPBS of size

5 and its corresponding conditional switch config-

uration. Since the binary numbers in processors

14 are 0110, respectively, conditional switches

S(1) and S(4) are set to cross, and S(2) and S(3)

are set to straight. The pulse injected from proces-

sor 0 passes through two unit delays on the select

waveguide due to the conditional delays caused

by S(1) and S(4). On the other hand, the pulse

passes through two unit delays on the reference

waveguide when it arrives at processor 2. Hence,

processor 2 detects the coincidence of the refer-

ence pulse and the select pulse. All other proces-

sors do not detect the coincidence. After receiving

a value of 2 from processor 2, processor 0 adds

its local number au = 1 to 2 and gets the sum, 3,

of the five binary numbers.

(5) Calculate lCl1 = N - s, IC21 = 1, and (C31 =

s - 1. Here, 1Ci 1 is the size of the set Ci for i =

1,2,3.

(6) In this step, we want to perform a split operation.

Before we formally describe the data movement

operation, we first introduce an operation called

compression. When the number of active elements

in the array is s, the compression algorithm will

move these active elements to processors N-s - 1,

N-s,..., N - 1. In other words, the compres-

sion algorithm moves all active data items to the

right-hand side of the array. Active elements are

labeled based on certain value of their local vari-

ables. A processor with an active element is re-

ferred to as active processor. For example, we can

label all processors with B(i) = 1 as active pro-

cessors. In the following discussion, we assume

that all active processors have their local variables

X(i) set to 1. The compression algorithm is imple-

mented as follows. First, processor i sets its local

switch S(i) to cross if X(i) = 1, and to straight if

X(i) = 0. Then, processor i whose X(i) = 1 in-

jects a reference pulse at time tref (the beginning

of a bus cycle) on the reference waveguide and

a select pulse at time tsel = tref + N - 1 on the

select waveguide. A processor also sends a mes-

sage frame containing its local data in memory

location D through the message waveguide dur-

ing the bus cycle. Processors with X(i) = 0 do

not put any pulse or message on the three waveg-

uides. In other words, every processor with an ac-

tive element tries to address processor N - 1. The

select pulse sent by the processor whose index is

the largest in the active set passes no delay in the

transmitting segments because all the processors

to its right are not in the active set and their cor-

responding switches are set to straight. Thus, the

two pulses will meet only at processor N - 1, and

the corresponding message is picked up by pro-

cessor N - 1. Similarly, the select pulse sent by

the processor whose index is the second largest in

the active set passes one conditional delay in the

transmitting segments because only one processor

to its right is in the active set and its correspond-

ing switch is set to cross. Since both the select and

reference pulses pass one delay on the select and

reference waveguides when arriving at processor

N - 2, the two pulses will meet only at proces-

sor N - 2. Hence, processor N - 2 receives the

data item from the processor whose index is sec-

ond largest in the active set. In general, the select

pulse sent by the processor whose index is the kth

largest in the active set passes k - 1 conditional

delays in the transmitting segments on the select

waveguide because k - 1 processors to its right are

in the active set and their corresponding switches

are set to cross. Since both the select and refer-

ence pulses pass k - 1 delays on the select and

Y Pan et al./Future Generation Computer Systems 13 (1997/98) 501-513 509

reference waveguides when arriving at processor

N - k, the two pulses will meet only at processor

N - k. Clearly, this is the compression operation.

Now, we describe the split operation used in

this step. Specifically, we want to separate set

Ct from set C3. In other words, all data ele-

ments D(i), 0 <i < N - 1, whose B(i) = 1 are

moved to the upper part of the array PEN(N - s),

PEN(N - s + I), . . , PEN(N - l), and all data

elements D(i), O<i 6 N - 1, whose B(i) =

0 are moved to the lower part of the array

PE(O), PE(l), . . . , PE(N - s - 2), where s satis-

fies the following equation:

N-l

S=
c B(k).

k=O

In other words, D(i) is moved to D(j) where j =

N - 1 - cFzt+, B(k) if B(i) = 1, and D(i) is

moved to D(j) where j = ciz\B(k) if B(i) =

0. The split operation is performed as follows.

First, we label processor i whose B(i) = 1 as ac-

tive; i.e., set X(i) to 1 iff B(i) = 1. We call the

compression algorithm to move all data elements

in the active set to the upper part of the array. To

avoid destroying the original data items in D, we

put them in a new memory location DI. Second,

we label all processors whose B(i) = 0 as active;

i.e., set X(i) to 1 iff B(i) = 0. Hence, Ct becomes

the current active set. Then, we call the compres-

sion algorithm to move all data elements in the set

to the upper part of the array. To avoid destroying

the data items in D and DI , we put them in a new

memory location D2. Third, move all data items

in memory location D2 left]C2] +]C3 (positions.

This is a normal data transfer operation. Using the

addressing scheme discussed before, processor h,

where]C2\+]C3l<h<N-1,sendsitsdataitem

to processor h - (1 C2 I + IC3 I) by transmitting a

reference pulse at time trer and a select pulse at

time r,,r + (N - (h - (jC,l+ IC3l)) - 1)~. Finally,

we copy all moved data from temporary locations

Dl or D2 to their corresponding local locations D.

(7) Now we divide the array into three subarrays.

The first subarray, i.e., processors 0, 1, . . .,

]Ct I, contains the elements in Ct. The sec-

ond subarray contains only processor ICI I + 1.

The third subarray, i.e., processors]Ct 1 +]Cz 1,

]Ct/+IC2]+1,...,N-1,containstheelements

in C3. This is done through setting the switches at

locations ICt I - 1 and]Ct I to cross. In this step,

we also change the indices of the third subarray

so that its indices also start from 0. This can be

accomplished by updating the index of processor

i, where (]Ci I -t 1) 6 i < N - 1, to i - (]Ct I + 1).

Finally, we update the sizes of the two subarrays

by broadcasting ICI I to all processors in the first

subarray and broadcasting]C3 1 to all processors

in the third subarray.

(8) In the last step, we recursively call QUICKSORT

(D, ICI I) on the LARPBS with processors 0, 1,

., (Cl1 if]CtI # 1, and QUICKSORT(D, IC3])

on the LARPBS with processors]Ct I + IC2 1,

Ic1I+lc2l+l,..., N - 1 if IC3] # 1, The al-

gorithm stops when both Ct and C3 contain one

element.

The correctness of the algorithm follows by a

straightforward induction on the size of the data

set [I]. Clearly, for each iteration a constant number

of steps is needed. In the worst case, each iteration

may reduce the vector size by only one. This hap-

pens when Cl or C3 is empty. Hence, in the worst

case a total of O(N) steps are needed. This is bet-

ter than the sequential quicksort algorithm discussed

in [l], which has a worst-case time complexity of

0(N2). The expected time of our quicksort algorithm

is much better than the sequential algorithm as seen

below.

Before we can talk about the expected running time

of an algorithm, we must agree on what the proba-

bility distribution of the inputs is. For sorting, a nat-

ural assumption, and the one we shall make, is that

every permutation of the set of numbers to be sorted

is equally likely to appear as an input. Under such a

condition, it is well known that the expected number

of iterations required by QUICKSORT is O(log N)

[11. The total expected time of the sorting algorithm

is the product of the average number of iterations and

the time spent in each iteration. Therefore, we have

the following theorem:

510 Z Pan et al./Future Generation Computer Systems 13 (1997798) Sol-513

Theorem 1. The QUICKSORT algorithm sorts a data

set of N elements on the LARPBS model of size N

in O(logZ N) steps on average and uses a constant

amount of memory in each processor:

In reality, the number of data elements does not

always match the size of the system. In many cases,

the number of data elements is much larger than the

size of the system since the system size is fixed once

a machine is built. Luckily, many of the operations on

the LARPBS are scalable when this situation occurs.

Assume that we have a data set of N elements and P

processors on the LARPBS. Also assume that each

processor contains N/P data elements. It has been

reported that many basic operations such as broadcast

and binary summation are scalable on the LARPBS

model and can be executed in N/P steps [35]. Thus,

we can adapt our QUICKSORT algorithm to obtain a

scalable quicksort algorithm. Since the average num-

ber of iterations remains the same, and each iteration

uses O(N/P) steps now, we obtain the following

result:

Theorem 2. The modi$ed QUICKSORT algorithm

sorts a data set of N elements on the LARPBS model

of size P in O((N/P) log2 N) steps on average and

uses O(N/p) memory elements in each processor

Clearly, the algorithm is also scalable.

4. Conclusions

In this paper, a new computational model called

LARPBS is introduced. In this model, messages can

be transmitted in a pipelined fashion on an optical bus

system and the bus can be dynamically reconfigured

into independent segments to satisfy different com-

munication requirements during a computation. Here,

a quicksort algorithm with an average of O(log,! N)

steps is designed for this model and we show that the

algorithm can be executed quickly. We also show that

the quicksort algorithm is scalable when the number

of processors in the system is smaller than the number

of data elements.

In fact, many divide-and-conquer problems can be

solved efficiently using a similar scheme. We first

need to partition a problem into several subproblems.

Then, we map these subproblems onto the bus system

and reconfigure the system into several subsystems ac-

cordingly. Now, we can solve these subproblems on

the subsystems recursively until the problem is solved

completely. This again shows that reconfiguration of

an optical bus system is very useful when used to solve

a divide-and-conquer problem.

The new model proposed in this paper is not an

optical implementation of a traditional reconfigurable

bus system. They are fundamentally different. For ex-

ample, on the LARPBS, a binary summation can be

performed in a constant number of steps while it is

impossible to accomplish such task on a traditional re-

configurable bus system in a single step. We believe

that many parallel algorithms can be implemented on

the LARPBS model. However, pipelined bus intercon-

nection may require us to rethink how we write par-

allel algorithms. Fully exploring the capabilities of an

optical bus requires careful mapping of data, an ef-

ficient addressing mechanism, and a set of efficient

basic data movement operations.

The LARPBS model was first proposed in a prelim-

inary version of the paper [25]. Since then, many new

results have been achieved [26,27,33]. Several basic

data movement operations and some image process-

ing problems have been implemented on the LARPBS

model [26]. Some matrix operations have also been

proposed using the LARPBS model [15]. Scalability

analysis on the LARPBS model is discussed in [35],

and the results indicate that many commonly used ba-

sic algorithms are scalable on the LARPBS model.

This implies that algorithms using only these basic al-

gorithms are also scalable.

Because the time spent in a bus cycle is proportional

to the size of the bus, it is not truly a constant. To

reduce the time in a bus cycle, the linear optical bus

system has been extended to two-dimensional meshes

and the new system is called arrays with reconfig-

urable optical buses (AROB) in [27,33]. Several inte-

ger sorting problems have been solved on the AROB

model [28]. Matrix operations have also been stud-

ied on the same model [29]. All these results indicate

I: Pan et al./Future Generation Computer Systems 13 (1997/98) 501-513 511

that arrays with reconfigurable pipelined buses are

powerful and practical computational models. Future

research include design and analysis of more basic op-

erations on the LARPBS, study of higher-dimensional

meshes with reconfigurable optical buses, and scala-

bility analysis of these systems. We are doing research

in these directions.

Acknowledgements

We would like to thank Professor L.O. Hertzberger

for his professional and timely handling of our sub-

mission. Thanks also go to the two anonymous refer-

ees for their valuable comments and suggestions.

References

[I] A. Aho, J. Hopcroft and J. Ullman, The Design

and Analysis of Computer Algorithms (Addison-Wesley,
Reading, MA, 1974).

[2] MS. Alam and M.A. Karim, Programmable optical
perfect shuffle interconnection network using Fredkin
gates, Microwave and Opt. Tech. Lett. 5 (7) 330-333.

[3] A.F. Benner, H.F. Jordan and V.P. Heuring, Digital optical
computing with optically switched directional couplers,
Opt. Engrg. 30 (12) (1991) 1936-1941.

[4] S.H. Bokhari, Finding maximum on an array processor
with a global bus, IEEE Trans. Comput. C-32 (2) (1984)

133-I 39.

[5] D.M. Chiarulli, S.P. Levitan, R.G. Melhem, M. Bidnurkar,
R. Ditmore, G. Gravenstreter, Z. Guo, C. Qiao, M. Sakr
and J.P. Teza, Optoelectronic buses for high-performance
computing, Proc. ZEEE 82 (11) (1994) 1701-1709.

[6] D. Chiarulli, R. Melhem and S. Levitan, Using coincident
optical pulses for parallel memory addressing, IEEE

Comput. 20 (12) (1987) 48-58.

[7] PW. Dowd, Wavelength division multiple access channel
hypercube processor interconnection, IEEE Trans. on

Comput. 41 (10) (1992) 1223-1241.
[8] Z. Guo, Sorting on array processors with pipelined buses,

Proc. Int. Con$ on Parallel Processing (St. Charles, IL,
August 1992) 289-292.

[9] Z. Guo, R. Melhem, R. Hall, D. Chiarulli and S. Levitan,
Pipelined communication in optically interconnected
arrays, J. Parallel Distributed Comput. 12 (3) (1991)
269-282.

[lo] M. Hamdi, A class of recursive interconnection networks:
Architectural characteristics and hardware cost, IEEE

Trans. Circuits and Systems-l: Fundamental Theory and

Applications 4 1 (12) (1994) 805-8 16.

[1 I] M. Hamdi and Y. Pan, Efficient parallel algorithms on
optically interconnected arrays of processors, IEEE Proc. -

Computers and Digital Techniques 142 (2) (1995) 87-92.

1121 K. Hwang and F. Briggs, Computer Architecture and

Parallel Processing (McGraw-Hill, New York, 1984).
[13] V. P. Kumar and C.S. Raghavendra, Array processor with

multiple broadcasting, J. Parallel Distributed Computing

4 (2) (1987) 173-190.

[141 S. Levitan, D. Chiarulli and R. Melhem, Coincident pulse
techniques for multiprocessor interconnection structures,
Appl. Opr. 29 (14) (1990) 2024-2039.

1151 K. Li, Y. Pan and S.Q. Zheng, Fast and processor
efficient parallel matrix multiplication algorithms on a
linear array with a reconfigurable pipelined bus system,
Technical Report 96004, Department of Computer
Science, Louisiana State University, 1996.

[161 A. Louri, Three-dimensional optical architecture and data-
parallel algorithms for massively parallel computing, IEEE

Micro 11 (2) (1991) 24-81.
[171 R. Melhem, D. Chiarulli and S. Levitan, Space

multiplexing of waveguides in optically interconnected
multiprocessor systems, Comput. J. 32 (4) (1989) 362-369.

1181 R. Miller, V.K. Prasanna-Kumar, D. Reisis and Q.F. Stout,
Meshes with reconfigurable buses, MIT Conf on Advanced

Research in VLSI (1988) 163-178.
[19] K. Nakano, T. Masuzawa and N. Tokura, A sub-logarithmic

time sorting algorithm on a reconfigurable array, ZEICE

Trans. 74 (11) (1991) 3894-3901.
[20] Y. Pan, Hough transform on arrays with an optical bus,

Proc. 5th Int. Conf - Parallel and Distributed Computing

and Systems (Pittsburgh, PA, October 1992) 161-166.
[21] Y. Pan, Order statistics on optically interconnected

multiprocessor systems, Proc. 1st Int. Workshop

on Massively Parallel Processing Using Optical

Interconnections (Cancun, Mexico, April 1994) 162-169.
1221 Y. Pan, Order statistics on a linear array with a

reconfigurable bus, Future Generation Computer Systems

1 I (3) (1995) 321-327.

[23] Y. Pan and H.Y.H. Chuang, Properties and performance of
the block shift network, IEEE Trans. Circuits and Systems-

I: Fundamental Theory and Applications 44 (2) (1997)

93-102.

[24] Y. Pan and M. Hamdi, Singular value decomposition on
processor arrays with a pipelined bus system, J. Network

and Computer Applications 19 (3) (1996) 235-248; a
preliminary version also appeared in Proc. ACM Symp. on

Applied Computing (1993) 525-532.

[25] Y. Pan and M. Hamdi, Quicksort on a linear array with a
reconfigurable pipelined bus system, Proc. IEEE Int. Symp.

on Parallel Architectures, Algorithms, and Networks (June
1996) 313-319.

1261 Y. Pan and K. Li, Linear array with a reconfigurable
pipelined bus system: Concepts and applications, Int. conf

on Parallel and Distributed Processing Techniques and

Applications (Sunnyvale, CA, August 1996) 1431-1442;
also to appear in: Special Issue on Parallel and Distributed
Processing Techniques and Applications, Inform. Sci.

(1997).

512 I: Pan et al./Future Generation Computer Systems 13 (1997/98) 501-513

[27] S. Pave1 and S.G. Akl, On the power of arrays with
optical pipelined buses, Proc. Int. Cant on Parallel
and Distributed Processing Techniques and Applications
(Sunnyvale, CA, August 1996) 1443-1454.

[28] S. Pave1 and S.G. Akl, Integer sorting and routing in
arrays with reconfigurable optical buses, Proc. Znt. ConjI
on Parallel Processing III (August 1996) 9694.

[29] S. Pave1 and S.G. Akl, Matrix operations using arrays
with reconfigurable optical buses, Parallel Algorithms and
Applications 11 (1996) 223-242.

[30] C. Qiao and R. Melhem, Time-division optical com-
munications in multiprocessor arrays, IEEE Trans. Comput.
42 (5) (1993) 577-590.
C. Qiao, R. Melhem, D. Chiarulli and S. Levitan, Optical
multicasting in linear arrays, Int. J. Opt. Comput. 2 (1)
(1991) 31-48.

131 1

~32 C. Qiao, R. Melhem, D. Chiarulli and S. Levitan,
Multicasting in optical bus connected processors using
coincident pulse techniques, Proc. Znt. Co@ on Parallel
Processing (August 1991).

[33] S. Rajasekaran and S. Sahni, Sorting, selection and routing
on the arrays with reconfigurable optical buses, IEEE
Trans. Parallel Distributed Systems (1997), to appear.

[34] S. Ramanan and H. Jordan, Serial array shuffle-exchange
architecture for universal permutation of time slots, SPZE
Proc. Digital Optical Computing II 1215 (1990) 33&342.

[35] J.L. Trahan, Y. Pan, R. Vaidyanathan and A.G. Bourgeois,
Scalable basic algorithms on a linear array with a
reconfigurable pipelined bus system, Proc. Int. ConjI on
Parallel and Distributed Computing Systems (New Orleans,
LA, October 1997). to appear.

Yi Pan was born in Jiangsu, China. He
entered Tsinghua University in March
1978 with the highest college entrance
examination score among all 1977 high
school graduates in Jiangsu Province.
He received his B.Eng. degree in com-
puter engineering from Tsinghua Uni-
versity, China, in 1982, and his Ph.D.
degree in computer science from the
University of Pittsburgh, USA, in 1991.

Dr. Pan joined the Department of
Computer Science at the University of

Dayton, Ohio, USA, in 1991 and has been an associate profes-
sor since 1996. His research interests include parallel algorithms
and architectures, optical communication and computing, dis-
tributed computing, task scheduling, and networking. He has
published more than 40 papers in international journals and
conference proceedings. He has received several awards in-
cluding NSF Research Opportunity Award, AFOSR Summer

Faculty Fellowship, Andrew Mellon Fellowship from Mellon
Foundation, and Summer Research Fellowship from the Re-
search Council of the University of Dayton. His research has
been supported by NSF, AFOSR, US Air Force, and the state
of Ohio. He is the co-recipient of the Best Paper Award at
the 2nd International Conference on Parallel and Distributed
Processing Techniques and Applications in 1996. Dr. Pan is
currently on the editorial board of the International Journal of
Parallel and Distributed Systems and Networks. He will be a
co-guest editor of a special issue of Parallel Processing Letters
on “Computing on Bus-Based Architectures” to be published
in 1998 and a special issue of Informatica on “Parallel Com-
puting with Optical Interconnections” to be published in 1998.
He will be the program vice chair of the 9th International Con-
ference on Parallel and Distributed Computing and Systems in
October 1997 and the publicity chair of the 1997 International
Conference on Parallel and Distributed Processing Techniques
and Applications. He has also served as a session chair or a
committee member for various international conferences.

Dr. Pan is a senior member of IEEE and a member of the
IEEE Computer Society. Currently, he is the Chairman of the
IEEE Computer Society Student Activities Committee in Re-
gion 2 (Mideastern USA) and the Secretary of IEEE Computer
Society Dayton Chapter. He is listed in Men of Achievement
and Marquis Who’s Who in Midwest.

Dr. Mounir Hamdi received the B.Sc.
degree with distinction in Electrical
Engineering from the University of
Southwestern Louisiana in 1985, and
M.Sc. and Ph.D. degrees in electri-
cal engineering from the University
of Pittsburgh in 1987 and 1991, re-
spectively. While at the University of
Pittsburgh, he was a Research Fel-
low involved with various research
projects on interconnection networks,
high-speed communication, parallel

algorithms, switching theory, and computer vision. In 1991
he joined the Computer Science Department at Hong Kong
University of Science and Technology where he is now an
Associate Professor. His main areas of research are Parallel
Computing. High-Speed Networks, ATM Packet Switching Ar-
chitectures, and Wireless networking. Dr. Hamdi has published
over 70 papers on these areas in various journals and confer-
ence proceedings. He co-founded and co-chaired the Interna-
tional Workshop on High-Speed Network Computing, is on the
editorial board of the IEEE Communications Magazine, and
has been on the Program Committee of various International
Conferences. Dr. Hamdi is a member of IEEE and ACM.

Y Pan et al./Future Generation Computer Systems 13 (1997/98) 501-513

Keqin Li received B.S. degree in com-
puter science (1985) from Tsinghua
University, China, and Ph.D. degree in
computer science (1990) from the Uni-
versity of Houston. He is currently an
Associate Professor of Computer Sci-
ence in State University of New York
(SUNY) at New Pal&. Dr. Li’s re-
search interests are mainly in design
and analysis of algorithms, and paral-
lel and distributed computing. He has
published about 70 research papers on

refereed journals and conference proceedings, and received best
paper awards in 1996 International Conference on Parallel and
Distributed Processing Techniques and Applications, and 1997
IEEE National Aerospace and Electronics Conference. His cur-
rent research is extensively supported by National Aeronautics
and Space Administration (NASA) and SUNY Research Foun-
dation. Dr. Li is the associate editor-in-chief of International
Journal of Parallel and Distributed Systems and Networks, and
a guest editor of Informatica, and lnformation Sciences - An
International Journal. He has served in various capacities for
numerous international conferences, and is the program chair of
9th International Conference on Parallel and Distributed Com-
puting and Systems (October 1997), and will be the conference
chair of 4th International Conference on Computer Science and
Informatics (October 1998). Dr. Li is a senior member of IEEE,
and a member of IEEE Computer Society, ACM, SIGACT,
SIGARCH. SIAM, ISMM, IASTED and SCS.

513

